If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2-102n+360=0
a = 5; b = -102; c = +360;
Δ = b2-4ac
Δ = -1022-4·5·360
Δ = 3204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3204}=\sqrt{36*89}=\sqrt{36}*\sqrt{89}=6\sqrt{89}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-102)-6\sqrt{89}}{2*5}=\frac{102-6\sqrt{89}}{10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-102)+6\sqrt{89}}{2*5}=\frac{102+6\sqrt{89}}{10} $
| 11n^2-103n+240=0 | | 80x10^(-0.2x)=2x-2 | | -8.2-3x-5.1-x=-3x-3.1 | | 35x+7=12x-3 | | (t-2)(t+2)=0 | | 48x+10=18x-8 | | 38x+10=18x-8 | | 4x+16-16=-4 | | 41.2^x-12.6^x-1=0 | | 189=125-x | | 2^(2x+1)-129(2^x)+64=0 | | 6x-9-6(1+x)=x-9 | | (3p)(-3)=36 | | 8x-16=x+19 | | 10y-11=4y+7 | | 10x-32=3x+31 | | 8x-21=2x+27 | | 19-5x=x-23 | | 4y+20=22 | | 18x/1000=1000 | | 2a-1/3=1/5-a | | 18+9t=4 | | 15/4+7x=9 | | 1.4=y/1.5 | | n*n*n=281474976710656 | | n*n=281474976710656 | | n=281474976710656 | | 5^2x+4(5^x-1)-125=0 | | 5^2x+4(5^x-4)-125=0 | | 2y-10-3=0 | | 5^2x+4(5x-1)-125=0 | | 4^2x+21(4^x)+80=0 |